131 research outputs found

    Information-seeking Behavior of Social Sciences and Humanities Researchers in the Internet Age

    Get PDF
    This study focuses on how Internet technology influences and contributes to the information-seeking process in the social sciences and humanities. The study examines the information-seeking behavior of faculty and doctoral students in these fields and observes and extends Ellis’s model of information-seeking behavior for social scientists, which includes six characteristics: starting, chaining, browsing, differentiating, monitoring, and extracting. The study was conducted at Tennessee State University. Thirty active social sciences and humanities faculty and doctoral students were interviewed about their use of Internet resources, their perception of electronic and print materials, and their opinions concerning the Ellis model and how it might be applicable to them. The research confirmed all the continuing relevance of all characteristics of the Ellis model, and theorized that an extended model could potentially include two additional characteristics: preparation and planning and information management. Based on the interview results, the researcher provides suggestions on how current information services and products can be improved to better serve social sciences and humanities researchers, discusses the implications of these new characteristics for information-searching needs, and makes recommendations for improving library services and technologies that will meet the needs of future social sciences and humanities scholars

    C3: Zero-shot Text-to-SQL with ChatGPT

    Full text link
    This paper proposes a ChatGPT-based zero-shot Text-to-SQL method, dubbed C3, which achieves 82.3\% in terms of execution accuracy on the holdout test set of Spider and becomes the state-of-the-art zero-shot Text-to-SQL method on the Spider Challenge. C3 consists of three key components: Clear Prompting (CP), Calibration with Hints (CH), and Consistent Output (CO), which are corresponding to the model input, model bias and model output respectively. It provides a systematic treatment for zero-shot Text-to-SQL. Extensive experiments have been conducted to verify the effectiveness and efficiency of our proposed method

    Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential

    Get PDF
    Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women

    The combined effect of a novel formula of herbal extracts on bacterial infection and immune response in Micropterus salmoides

    Get PDF
    Herbal extracts have been considered as ideal alternative to antibiotics in aquaculture and application of combinatory effective extracts always can exhibit the enhanced bioactivity with high efficiency. In our study, a novel herbal extract combination GF-7, which is composed of Galla Chinensis, Mangosteen Shell extracts as well as the effective parts of Pomegranate peel and Scutellaria baicalensis Georgi extracts, was prepared and applied for the therapy of bacterial infection in aquaculture. The HPLC analysis of GF-7 was also investigated for quality control and chemical identification. In the bioassay, GF-7 had excellent antibacterial activity against various aquatic pathogenic bacteria in vitro, and the related MIC values were between 0.045 and 0.36 mg/mL. After feeding Micropterus salmoide with GF-7 (0.1, 0.3, and 0.6%, respectively) for 28 days, the activities of ACP, AKP, LZM, SOD, and CAT of the liver in each treatment group were significantly increased and the content of MDA was significantly decreased. Meanwhile, the hepatic expression of the immune regulators including IL-1β, TNF-α, and Myd88 at different times was up-regulated in varying degrees. The challenge results exhibited a good dose-dependent protective effect on M. salmoides infected with A. hydrophila, which was further confirmed by liver histopathology. Our results imply that the novel combination GF-7 is a potential natural medicine for the prevention and treatment of numerous aquatic pathogenic infectious diseases in aquaculture

    The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets.

    Full text link
    peer reviewedThis study evaluated the effects of dietary gallic acid (GA) on growth performance, diarrhea incidence and plasma antioxidant status of weaned piglets regardless of whether weaning weight was high or low. A total of 120 weaned piglets were randomly allocated to four treatments in a 42-day experiment with a 2 × 2 factorial treatment arrangement comparing different weaning weights (high weight (HW) or low weight (LW), 8.49 ± 0.18 kg vs. 5.45 ± 0.13 kg) and dietary treatment (without supplementation (CT) or with supplementation of 400 mg/kg of GA). The results showed that HW piglets exhibited better growth performance and plasma antioxidant capacity. Piglets supplemented with GA had higher body weight (BW) on day 42 and average daily gain (ADG) from day 0 to 42 compared to the control piglets, which is mainly attributed to the specific improvement on BW and ADG of LW piglets by the supplementation of GA. The decreased values of diarrhea incidence were seen in piglets fed GA, more particularly in LW piglets. In addition, dietary GA numerically reduced malondialdehyde (MDA) content in plasma of LW piglets. In conclusion, our study suggests that dietary GA may especially improve the growth and health in LW weaned piglets

    Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR

    Get PDF
    Purpose: Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mTOR for the treatment of HCC. However, such inhibitors induce hyperglycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor phenformin could reverse both side effects, impose an energetic stress on cancer cells, and suppress the growth of HCC. Experimental Design: Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated preclinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. Results: We found phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with phenformin, was highly efficacious in controlling tumor burden. However, more strikingly, pretreatment with phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Conclusions: Treatment of HCC cells in vitro with the biguanide phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC

    Effectiveness of Inactivated SARS-CoV-2 Vaccines During a Delta Variant Outbreak in Hunan Province, China: A Retrospective Cohort Study

    Get PDF
    This study was aimed at investigating the effectiveness of inactivated COVID-19 vaccines against the Delta variant. We performed a retrospective cohort study of close contacts of people with laboratory-confirmed SARS-CoV-2 infections in Hunan province, China, from July to August 2021. Mixed-effect logistic regression was used to estimate vaccine effectiveness (VE), and analyze the effects of the vaccination status of index cases and the exposure risk level on VE estimation. A total of 1,685 close contacts of 126 index cases were included; 835 (49.6%) had received two doses of inactivated vaccines, and the median interval between the 2nd dose and exposure was 48 days (IQR: 41 to 56 days). Full vaccination was defined as two doses at least 14 days before exposure. Adjusted VE estimates for full vaccination were 54.8% (95% CI: 7.7 to 77.9) and 68.4% (95% CI: 8.5 to 89.1) against symptomatic and moderate-to-severe COVID-19, respectively. VE for inactivated vaccines was difficult to observe if index cases had been fully vaccinated. The estimated VE with respect to infection protection was lower among household than non-household contacts. Complete primary immunization of two-dose inactivated COVID-19 vaccines protected against SARS-CoV-2 Delta variant infection. Infection risk was higher among vaccinated household contacts than vaccinated non-household contacts

    Pien Tze Huang Alleviates Relapsing-Remitting Experimental Autoimmune Encephalomyelitis Mice by Regulating Th1 and Th17 Cells

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating inflammatory cells and demyelinating lesions, and T helper (Th) cells play critical roles in the pathogenesis of MS. There is still lack of effective treatments currently. Pien Tze Huang (PZH), a traditional Chinese medicine formula, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. However, whether PZH can be used to treat MS is still obscure. This study aimed to investigate the possible therapeutic effect and the underlying action mechanism of PZH in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mice. Female SJL/J mice were immunized with myelin proteolipid protein 139–151 (PLP139−151) and pertussis toxin to establish RR-EAE model. Mice were then randomly divided into normal group, model group, PZH group and positive control group (fingolimod, FTY-720), and drugs were orally administered for 60 days from the day 10 after immunization. Sera of mice were collected for ELISA detection. Tissues of CNS were harvested for hematoxylin-eosin (H-E) and luxol fast blue (LFB) staining. Furthermore, Th1, Th17 cells and their related cytokines in the CNS were detected by flow cytometry and quantitative real-time PCR, respectively. Proteins involved in STAT and NF-κB signaling pathways were detected by western blot. The results showed that PZH-treated mice displayed mild or moderate clinical symptoms compared with untreated EAE mice that exhibited severe clinical symptoms. PZH remarkably reduced inflammatory cell infiltration and myelin damage in the CNS of EAE mice. It markedly down-regulated the levels of IFN-γ and IL-17A in sera of EAE mice. Moreover, PZH could reduce the percentages of Th1 and Th17 cells. It also suppressed the production of transcription factors ROR-γt and T-bet as well as the mRNA levels of their downstream pro-inflammatory cytokines, such as IFN-γ and IL-17A. Furthermore, PZH could inhibit the phosphorylation of some key proteins in the STAT and NF-κB signaling pathways. In conclusion, the study demonstrated that PZH had a therapeutic effect on RR-EAE mice, which was associated with the modulation effect on Th1 and Th17 cells

    Neuroprotection of Tanshinone IIA against Cerebral Ischemia/Reperfusion Injury through Inhibition of Macrophage Migration Inhibitory Factor in Rats

    Get PDF
    . Recent studies have demonstrated that TSA has protective effects against focal cerebral I/R injury. However, little is known about the underlying mechanisms. Here we put forward the hypothesis that TSA acts through inhibition of MIF expression during focal cerebral I/R injury in rats.Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hours. This was followed by reperfusion. We measured neurological deficits, brain water content, and infarct volume, and found that neurological dysfunction, brain edema, and brain infarction were significantly attenuated by TSA 6 hours after reperfusion. We also measured myeloperoxidase (MPO) activity at 6 and 24 hours, and found that neutrophil infiltration was significantly higher in the vehicle+I/R group than in the TSA+I/R group. ELISA demonstrated that TSA could inhibit MIF expression and the release of TNF-α and IL-6 induced by I/R injury. Western blot analysis and immunofluorescence staining showed that MIF expression was significantly lower in the TSA+I/R group than in the vehicle+I/R group. MIF was found almost all located in neurons and hardly any located in astrocytes in the cerebral cortex. Western blot analysis and EMSA demonstrated that NF-κB expression and activity were significantly increased in the vehicle+I/R group. However, these changes were attenuated by TSA.Our results suggest that TSA helps alleviate the proinflammatory responses associated with I/R-induced injury and that this neuroprotective effect may occur through down-regulation of MIF expression in neurons
    • …
    corecore